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4.3 CONTAGION IN EPIDEMIOLOGY

4.3.1 Clarifying the Notions

The biology of infectious diseases (Anderson and May 1991, p. 13) divides 
the population which can become host to microparasites into the following 
classes of individuals: susceptible (uninfected), infected (latent, infectious) 
and recovered/immune. The latent period is defined as the average period of 
time from the point of infection to the point when an individual becomes 
infectious to others, the infectious period denotes the average period over 
which an infected person is infectious to others, and the period from the point 
of infection to the appearance of symptoms of disease is termed the incuba-
tion period (Anderson and Nokes 1997, p. 692). The duration of symptoms of 
disease, as depicted in Figure 4.1, is ‘not necessarily synchronous with the 
period during which an infected host is infectious to susceptible individuals’ 
(Anderson and May 1991, p. 14). 

Figure 4.1 The development of an infectious disease
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Source: Anderson and Nokes (1997, p. 692).

Surprisingly, ‘contagion’ is not a key term in epidemiology: instead, the 
equivalent notion is ‘transmission’; the so-called ‘transmission coefficient’ 
determines the rate at which ‘new infections arise as a consequence of mixing 
between the susceptible and infected individuals’ (ibid.). The so-called ‘force 
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of infection’ is the probability that a given susceptible host will become 
infected (ibid., p. 63). 

Note also that indirect transmission exists; in this case, ‘the parasite passes 
through one or more species of intermediate hosts in order to complete its life 
cycle’ (ibid., p. 22). There is an average stay of the microparasites in the 
infected class who recover and survive the disease and there is also an 
average stay of the virus among the class of immune individuals. During 
recovery, viral abundance decays to zero/very low levels and antibodies 
specific to viral antigens rise to high levels. ‘Recovered hosts are almost 
invariably fully immune to further infection in the case of viral parasites’ 
(ibid., p. 31). However, the duration of human immunity is not lifelong in the 
majority of cases. This is why ex-immunes become by definition newly 
susceptible.

A major issue in the framework of spreading epidemic diseases is the 
effective reproductive rate of a parasite (F); a parasite must have a basic 
reproductive rate (F0 ) , that is, the average number of successful offspring it 
is capable of producing, of F0 > 1. In a human environment, F0 is more 
precisely defined as the ‘average number of secondary infections produced 
when one infected individual is introduced into a host population where 
everyone is susceptible’ (ibid., p. 17). In equilibrium, the effective rate will 
be just one and, in particular, this is known as the ‘endemic equilibrium’
(Anderson and Nokes 1996, p. 238): 

1*
0sFF (4.1)

where s* is the fraction of the host population that is susceptible in 
equilibrium (Anderson and May 1991, p. 17).8 If the prevalence or incidence 
of infection is stable through time, the effective reproductive rate F must 
equal unity in value; this is a situation in which each primary case gives rise, 
on average, to a single secondary infectious individual (Anderson and Nokes
1997, p. 700). This result is important for the economic modelling of 
infection and contagion in economics as it points to the possibility of 
restriction he analysis to a two-country or two-investor perspective. 

Let us explore this phenomenon in more detail. On invasion, the vast 
majority of hosts are susceptible, and hence provided F0 > 1, the epidemic 
expands as illustrated in Figure 4.2.

However, as the epidemic progresses, more and more of the contacts made by an 
infected host are either immune or already infected. As the effective reproductive
number declines, and eventually at equilibrium it settles to the value of unity 
where each infected person generates an average of one secondary infection. 
(Anderson 1998, p. 33) 
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Figure 4.2 The expansion process of an epidemic
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Source: Anderson (1998, p. 33).

Note that in periods 1 and 2 (4 and 5) the associated transmission from an 
individual 4 (6) to an individual 4 (7) is of the ‘latent domino effect’ nature; 
the same applies to individual 2 in periods 6 and 7. However, ‘real domino 
effects’ apply only when we find a chain: this is the case with individuals 6 
(period 6 = start), 6, 5 (period 8 = end). ‘Pure contagion’, that is, situations 
where for each infected individual F0 > 1, are better represented by all 
remaining cases of transmission depicted in Figure 4.2! Hence, we may 
conclude that domino effects are only a partial aspect of contagion! F0 can be 
approximated by the following formula: 

STF0 (4.2)

that is the number of susceptibles present with which the primary case can 
come into contact (S), multiplied by the length of time that the primary case 
is infectious to others, T, multiplied by the transmission coefficient, . Hence, 
we achieve:
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1*STsF (4.3)

.1* STs (4.4)

There is a critical level for S such that F0 is set at one and the broad 
reproductive rate is lower than necessary for an epidemic expansion. 

.1 TST (4.5)

In this case, if the density of susceptibles can be reduced to less than ST in 
value, an eradication of the virus (by a mass vaccination for instance) 
becomes feasible (Anderson and Nokes 1997, pp. 700–701). 

4.3.2 A Simple Model of Contagious Disease 

Consider a stable population of size N which consists of: 

ZYHSMN (4.6)

where M is the number of infants with maternally derived immunity, S is the 
number of susceptibles, H is the number of infected, but not yet infectious 
individuals, Y is the number of infectious individuals and Z is the number of 
immunes. Figure 4.3 shows in a flow chart how these variables are related to 
one another. 

It is assumed that the net birth rate is equal to the natural per capita 
mortality rate ( ) so that the number of births is N; is the per capita rate of 
movement out of class M; is the rate of transmission that defines the 
probability of contact and infection transfer between a susceptible and an 
infectious person, defines the per capita rate of leaving the latent class; is 
the per capita rate of leaving the infectious class and (not included in Figure 
4.3) is the per capita disease-induced death rate (Anderson and May 1991, 
p. 58; Anderson and Nokes 1997, p. 693). With this notation, one may define 
the following system of differential equations: 

MNdtdM )( (4.7)

SYMdtdS )( (4.8)

HSYdtdH )( (4.9)
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YHdtdY )( (4.10)

.ZYdtdZ (4.11)

The net rate of infection SY, is approximated by a relationship 
proportional ( ) to the density of susceptibles (S) multiplied by the density of 
infectious individuals, Y (Anderson and Nokes 1997, p. 694). The equations 
(4.7) to (4.11) constitute a simple model of infection transmission; the equili-
brium properties of this system (‘endemic equilibrium’) can be examined by 
setting the time derivatives equal to zero, ‘that is such that there are assumed 
to be no further changes in the number of individuals within each infection 
class because the flows into and out of any one category are equal’ (ibid., 
p. 695): 

NM *
(4.12)

Figure 4.3 Different classes within a population affected by an infectious 
disease
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Source: Anderson and Nokes (1997, p. 604).
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The interpretation of the steady-state solutions is straightforward. From 
these ten equations, at least six, (4.8) and (4.13), (4.10) and (4.15), and (4.11)
and (4.16) deserve our special interest, as we have to establish a link to 
‘contagion’ in economics later on. Hence, in the following, we shall focus on 
a reduced set of equations which are able to show how an epidemic arises, 
but also when it may die out. If we disregard the infants with derived 
immunity, equation (4.8) simplifies to: 

.)( SYNdtdS (4.17)

If we also neglect and the distinction between latent and infectious 
individuals, we achieve:

.)( YSYdtdY (4.18)

Finally, the immunes are modelled as before: 

.ZYdtdZ (4.19)

Total population now consists of: 

.ZYSN (4.20)

With this reduced set of equations we can now easily simulate three 
scenarios: (i) no epidemic, (ii) transitory epidemic and (iii) persistence (latent 
epidemic)! Consider in the first case (i) a population which is totally 
susceptible, but not affected by mortality (then is zero in all of the above 
equations) where we introduce a few infecteds. The epidemic will not occur 
if the basic reproductive rate is less than one (F0 = 0.005) and the density of 
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susceptibles does not reach the critical threshold value (ST = 10,000). See 
Figure 4.4 for a simulation of this first case. 

Figure 4.4 The no-epidemic case
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Notes: At time t = 1: S = 150, Y = 100, Z = 0, = 0.0001, = 1, F0 = 0.015, ST = 10,000.

Sources: Anderson and Nokes (1997, p. 702); own calculations.

The epidemic will, however, occur (ii) if the basic reproductive rate is 
greater than or equal to one (F0 = 5) and the density of susceptibles exceeds 
the threshold value (ST = 100). But, even in the outbreak of an epidemic case, 
‘as time progresses, the density of susceptibles will decline, until the 
effective reproductive rate F is less than unity (that is, the number of 
susceptibles falls below the threshold (ST = 1/ T)) and the infection dies out’ 
(Anderson and Nokes 1997, p. 701). For a simulation of this second case, see 
Figure 4.5.

For an epidemic to become persistent (latent epidemic), one of two things 
must happen. In the first example for (iii), we shall limit our scope to the case 
where9 susceptibles are continually introduced into the population by births
at a net rate of N, where is the per capita birth rate and at the same time 
the rate of mortality, so that total population is maintained at a constant level. 
The infection will persist in the population, provided that F0 1 (Anderson
and Nokes 1997, pp. 701–2). Let us calculate the endemic equilibrium
implied by looking at the steady-state values of equations (4.17), (4.18) and 
(4.19):
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In equilibrium (4.18) turns into 
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Introducing (4.21) gives: 

).(
)(

** SNY (4.23)

The steady-state solution for the immunes is straightforward: 

Figure 4.5 The transitory epidemic case
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Notes: At time t = 1: S = 500, Y = 1, Z = 0, = 0.01, = 1, F0 = 5, ST = 100.

Sources: Anderson and Nokes (1997, p. 702); own calculations.
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.** YZ (4.24)

As in equilibrium S* = ST, (4.23) gives: 

)(
)(

*
TSNY . (4.25)

The stationary solutions, S*, Y*, Z* define the set of variables in the 
endemic equilibrium. A simulation of this first example for an infection 
which persists in a community (iii) is provided by Figure 4.6.

Figure 4.6 Persistence of an infection (renewal due to births)
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Notes: The conditions for the persistence of an infection in a community when renewal of 
susceptibles is due to births are at time t = 1: S = 70,000; Y = 1; Z = 930,000; 

= 0.0004; = 26; = 0.02; F0 = N/( 15.37; ST = 65,050.

Sources: Anderson and Nokes (1997, p. 702); own calculations.

The second example for (iii) abstracts from new births and from mortality 
( = 0), but rather concentrates on the possibility that immunity is of short 
duration with 1/ as the average duration of immunity and hence as the rate 
at which immunes ‘regain’ susceptibility. The respective equations then 
change into: 

ZYSdtdS (4.26)
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YSYdtdY (4.27)

.ZYdtdZ (4.28)

The endemic equilibrium values now are: 

)(
)(

*
TSNY (4.29)

.** YZ (4.30)

A simulation of this second case of (iii) is found in Figure 4.7.

Figure 4.7 Persistence of an infection (renewal due to waning immunity)

0
25,000
50,000
75,000

100,000
125,000
150,000
175,000
200,000
225,000
250,000

0 1 2 3 4 5 6 7 8 9 10

Time

800,000
820,000
840,000
860,000
880,000
900,000
920,000
940,000
960,000
980,000
1,000,000

Threshold Susceptibles Infecteds Immunes

Notes: The conditions for the persistence of an infection in a community when renewal of sus-
ceptibles is due to waning immunity are at time t = 1: S = 70,000; Y = 1; Z = 930,000; 

= 0.0004; = 26; = 0.05; F0 = N/( 15.37; ST = 65,050.

Sources: Anderson and Nokes (1997, p. 702); own calculations.

4.3.3 Illness and Recovery in a Two-Agent-(Dis)Equilibrium Setting

A better understanding of contagion is provided when we concentrate on the 
differences with regard to a composite m of main medical indicators –
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temperature, blood pressure, pulse frequency and blood composition (density 
of red blood cells, number of infected cells, percentage of infected cells and 
so on, see Anderson 1994, p. 474) of, say, two hypothetical patients i, j.
When two individuals of comparable characteristics (age, size and so on) are 
both healthy, key medical indicators for the functioning of their organisms 
tend to show little difference (first equilibrium): 

**
ji mm . (4.31)

If one of the two individuals suffers an infection, the difference in these 
indicators will shoot up quickly: 

)()( tmtm ji . (4.32)

Contagion will have been effective if we observe a strong tendency of 
those indicators to pursue a similar though lagged pattern in the following, as 
depicted in Figure 4.8. After recovery of both individuals has begun, the 
indicators tend to normalize. In the hopefully new, second equilibrium the 
indicators of both individuals will resemble each other as they did at the time 
of the first equilibrium. Note that ‘illness’ is treated as a temporary all-time-
high scenario for the respective indicators mi(t), mj(t). 

Figure 4.8 Illness and recovery in a two-patient setting
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4.3.4 How to Deal with the Identification Problem? 

With the help of the sequence depicted in Figure 4.9, which is nothing but a 
three-individual overlapping time profile of an infection, we may try to avoid 
the so-called ‘identification problem’ in epidemiology: ‘when differential 
vulnerability to an unobserved common shock[10] reflects unobserved 
characteristics, we may get what looks like true contagion, since a crisis in 
one country will be followed by a crisis in another, with no apparent 
explanation than the original crisis itself’ (Drazen 1999, p. 5). 

Figure 4.9 The overlapping time profile of an infection (three individuals)
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Individual A can – as the example was designed – at most transmit the 
disease to B and C; however, we cannot be sure a priori if individual C was 
infected by A or by B! When time-series data were available, we would have 
to apply Granger causality tests. Notice that when B (A) Granger causes the 
infection of C (only B), we have ‘latent domino effects’ (see above). 

A problem with ‘contagion’ in economics, however, is that we have to 
identify the time durations within each of the identified classes in Figure 4.1
and 4.9! If we think about contagion among investors in the sense of herding
(see above), for instance, it is most likely that we have to deal with much 
shorter time intervals. 

4.3.5 What about Exogenous Immunization and other Means of 
Prevention?

So far so good; doctors of medicine and economists would be delighted if 
they could rely on the endogenous process of immunization described above. 
However, in many cases, severe infections require means of prevention and 
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exogenous immunization. Note that exogenous immunization (either active 
or passive) is one of the possible prevention instruments. Other means of 
prevention against infection from microparasites among individuals are 
hygiene, quality controls of water and air, the removal and recycling of dust,
and food hygiene. 

A synonymous term for exogenous immunization is vaccination; to 
eradicate an infection by mass vaccination it is indispensable that the 
proportion of the population successfully immunised, v, exceeds a critical 
value vC, where: 

011 SvC (4.33)

so that too few susceptibles remain to perpetuate transmission, that is: 

.TSS (4.34)

Therefore, the larger the value F0, the higher the coverage (vC) needed to 
eliminate infection, ceteris paribus!

4.4 A REINTERPRETATION OF ‘CONTAGION’ AS A 
TERM IN ECONOMICS 

4.4.1 The Insights Gained from Epidemiology

A major lesson that contagion literature in economics can learn from 
epidemiology is first, to differentiate painstakingly between infections 
without epidemic (i), transitory epidemic (ii), and epidemic oscillations 
around an endemic equilibrium (iii). Second, it should be clear that the first 
case is not of much relevance for economics, whereas the second and the 
third are of considerable relevance. Third, it seems to me, however, that there 
is to the best of my knowledge not a single contribution in the contagion 
literature which distinguishes – as there should be – between cases (ii) and 
(iii)! 

4.4.2 Towards a Useful Definition

First of all: what is (are) the disease(s) we are talking about? We are 
interested in economic crises triggered by financial market and exchange rate 
crises, the latter defined ‘broadly to include not only devaluations but also 
successful defence of a peg that involves substantial increases in interest rates 
and losses of reserves’ (Masson 1998, p. 4). 


